
CHAPTER 4

Elements of free probability theory

1. Cumulants and moments in classical probability

Let (Ω,F ,P) be a probability space. For random variables Xi on this probability
space, define mn[X1, . . . ,Xn] = E[∏n

j=1 Xj] whenever the expectation exists. We will also
write m0 = 1. The function m·[·] is called the moment function.

Let Pn denote the set of all set-partitions of [n]. For example, P3 consists of the five
partitions {{1,2,3}}, {{1,2},{3}}, {{1,3},{2}}, {{2,3},{1}} and {{1},{2},{3}}. The
sets that make up a partition are referred to as blocks. Note that the order of the blocks, or of
the elements in individual blocks are irrelevant (in other words, the partition {{3},{2,1}}
is the same as {{1,2},{3}}). For a partition Π we denote the number of blocks by !Π and
the individual blocks by Π j, 1 ≤ j ≤ !Π. If we ever need to be more definite, we shall let
Π1 be the block containing 1, Π2 to be the block containing the least element not in Π1 etc.

Definition 77. Define the cumulant function κn[X1, . . . ,Xn] by the equations

(41) mn[X1, . . . ,Xn] = ∑
Π∈Pn

!Π

∏
j=1

κ|Π j |[X [Π j]].

Here if Π j = {k1, . . . ,kr} with k1 < k2 < .. . < kr, then |Π j| := r and [X [Π j]] is the short
form for [Xk1 , . . . ,Xkr ].

Rewrite the first three equations as

κ1[X ] = m1[X ], κ2[X ,Y ] = m2[X ,Y ]−κ1[X ]κ1[Y ]
κ3[X ,Y,Z] = m3[X ,Y,Z]−κ2[X ,Y ]κ1[Z]−κ2[X ,Z]κ1[Y ]−κ2[Y,Z]κ1[X ]+κ1[X ]κ1[Y ]κ1[Z]

It is clear that we can define κ1 from the first equation, κ2 from the second and so on,
inductively.

For any Π ∈ Pn, introduce the notation

mΠ[X1, . . . ,Xn] =
!Π

∏
j=1

m|Π j |[X [Π j]], κΠ[X1, . . . ,Xn] =
!Π

∏
j=1

κ|Π j |[X [Π j]].

In this notation, the equations defining cumulants may be written as mn[X ] = ∑Π∈Pn κΠ[X ]
where X = (X1, . . . ,Xn).

Exercise 78. Show that κn[X ] = ∑Π∈Pn(−1)!Π−1(!Π−1)!mΠ[X ].

The following lemma collects some basic properties of cumulants.

Lemma 79. (1) Cumulant function is multilinear: κn[cX1 +dX ′
1,X2, . . . ,Xn] = cκn[X1,X2, . . . ,Xn]+

dκn[X ′
1,X2, . . . ,Xn] and similarly in each of the other co-ordinates. Further, κn

is symmetric in its arguments. For Π ∈ Pn, κΠ is multilinear but not necessarily
symmetric.
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58 4. ELEMENTS OF FREE PROBABILITY THEORY

(2) Assume that X = (X1, . . . ,Xd) is such that E[e〈t,X〉] < ∞ for t in a neighbourhood
of 0 in Rd. Let ϕX (t) = E

[
e〈t,X〉

]
and ψX (t) = logE

[
e〈t,X〉

]
. Then,

ϕX (t) =
∞

∑
n=0

d

∑
i1,...,in=1

ti1 . . . tin
n!

mn[Xi1 , . . . ,Xin ],

ψX (t) =
∞

∑
n=1

d

∑
i1,...,in=1

ti1 . . . tin
n!

κn[Xi1 , . . . ,Xin ].

(3) Let U = (X1, . . . ,Xk) and V = (Xk+1, . . . ,Xd). Then, the following are equivalent.
(i) U and V are independent.

(ii) κn[Xi1 , . . . ,Xin ] = 0 for any n ≥ 1 and any i1, . . . , in ∈ [d] whenever there is
least one p such that ip ≤ k and at least one q such that iq > k.

PROOF. (1) Obvious.
(2) Expand e〈t,X〉 = ∑n〈t,X〉n/n! and 〈t,X〉n = ∑d

i1,...,in=1 ti1 . . . tin Xi1 . . .Xin . Taking
expectations gives the expansion for ϕX (t). To get the expansion for ΨX (t), let

ψ(t) =
∞
∑

n=1

d
∑

i1,...,in=1

ti1 ...tin
n! κn[Xi1 , . . . ,Xin ] and consider

eψ(t) =
∞

∑
n=1

1
n!

d

∑
k1,...,kn=1

κk1

(3) U =(X1, . . . ,Xm) is independent of V =(Xm+1, . . . ,Xn) if and only if ψ(U,V )(t,s)=
ψU (t) + ψV (s) for all t ∈ Rm, s ∈ Rn−m. By part (b), ψU (respectively, ψV )
has an expansion involving κk[Xi1 , . . . ,Xik ] where i1, . . . , ik ≤ m (respectively,
i1, . . . , ik > m). However, ψ(U,V ) has coefficients κk[Xi1 , . . . ,Xik ] where ir range
over all of [n]. Thus, U and V are independent if and only if κk[Xi1 , . . . ,Xik ] = 0
whenever there are p,q such that ip ≤m and iq > m. This proves the equivalence
of the two statements. !

Part (c) of the lemma is the reason why cumulants are useful in studying independent
random variables. We shall illustrate this by a quick proof of the central limit theorem (for
a restricted class of random variables). However, first we make a few remarks on cumulants
of one random variable which the reader may be familiar with.

Let X be a real-valued random variable such that E[etX ] < ∞ for t in a neighbour-
hood of zero. Then ϕX (t) = ∑∞

n=0 mn(X)tn/n! and ψX (t) = ∑∞
n=1 κn(X)tn/n! where mn =

mn[X , . . . ,X ] and κn[X , . . . ,X ]. The relationship between moments and cumulants becomes

mn(X) = ∑
Π∈Pn

!Π

∏
j=1

κ|Π j |(X), κn(X) = ∑
Π∈Pn

(−1)!Π−1(!Π−1)!
!Π

∏
j=1

κ|Π j |(X).

The cumulant sequence (or the moment sequence) determines the moment generating func-
tion and hence the distribution of X . Thus knowing the cumulant sequence is sufficient to
answer every question about X (in principle). Of course, a quantity like P(1 < X < 2) is not
easy to express in terms of cumulants, so the “in principle” phrase must be taken seriously.
There is an additional issue of loss of generality in considering only random variables with
moments. For these reasons usually one does not base probability theory on moments or
cumulants exclusively. However, there are features that can be captured well in terms of
cumulants. Independence is one of them, as part (c) of Lemma 79 shows.

Summing of independent random variables is also captured nicely in terms of cumu-
lants. Indded, if X and Y are independent random variables, by part (a) of Lemma 79
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we can write κn(X +Y ) = κn[X +Y, . . . ,X +Y ] as a sum of 2n terms. By part (c) of the
same lemma, using independence, all but two of these vanish and we get κn(X +Y ) =
κn(X)+ κn(Y ). A particular case is when Y = c, a constant, in which case κn(X + c) =
κn(X)+ cδn,1. Observe that in contrast, mn(X + c) has a relatively more complicated ex-
pression in terms of moments of X .

Exercise 80. (1) If X ∼ N(µ,σ2), then κ1[X ] = µ, κ2[X ] = σ2 and κn[X ] = 0 for
n≥ 3.

(2) Conversely, if κn[X ] = 0 for all n≥ 3, then X ∼ N(κ1,κ2).
(3) If X ,Y are i.i.d random variables and X +Y d=

√
2X , show that X ∼ N(0,σ2) for

some σ2.

Example 81. Let X ∼ exp(1). Then ϕX (t) = (1−t)−1 = ∑n≥0 tn for t < 1. Hence mn = n!.
ψX (t) = − log(1− t) = ∑n≥1 n−1tn which shows that κn = (n− 1)!. If Y ∼ Gamma(ν,1)
then for integer values of ν it is a sum of i.i.d exponentials, hence κn(Y ) = ν(n− 1)!. It
may be verified directly that this is also true for any ν > 0.

Example 82. Let X ∼ Pois(1). Then E[etX ] = e−1+et . Expanding this, one can check that
mn = e−1 ∑∞

k=0
kn

k! . It is even easier to see that ψX (t) = −1 + et and hence κn = 1 for all
n ≥ 1 and hence also κΠ = 1. But then, the defining equation for cumulants in terms of
moments shows that mn = ∑Π∈Pn κΠ = |Pn|. Thus as a corollary, we have the non-trivial
relation |Pn| = e−1 ∑∞

k=0
kn

k! , known as Dobinsky’s formula.

Remark 83. The relationship between mn and κn just comes from the connection that
logϕ = ψ where mn/n! are the coefficient of ϕ and κn/n! are coefficients of ψ. The same
is true for coefficients of any two power series related this way. A closer look at the expres-
sions for mn in terms of κn or the reverse one shows that if mn counts some combinatorial
objects, then κn counts the connected pieces of the same combinatorial object.

For example, in Example 81, mn = n! counts the number of permutations on n letters
while κn = (n− 1)! counts the number of cyclic permutations. As any permutation may
be written as a product of disjoint cycles, it makes sense to say that cycles are the only
connected permutations.

In Example 82, mn = |Pn| while κn = 1. Indeed, the only “connected partition” is the
one having only one block {1,2, . . . ,n}.

In case of N(0,1), we know that mn counts the number of matching of [n]. What are
connected matchings? If n > 2, there are no connected matchings! Hence, κn = 0 for n≥ 3.

Now we turn to the promised proof of CLT. By part (c) of Exercise 80, if Sn/
√

n were
to converge to a limit, then it is easy to see that the limit random would have to satisfy
the recursive distributional equation U +V d=

√
2U where U,V are i.i.d copies of the limit

variable and hence U ∼ N(0,σ2). Using cumulants we can actually show that this is the
case.

PROOF OF CENTRAL LIMIT THEOREM ASSUMING MGF EXISTS. Suppose X1,X2, . . .
are i.i.d with zero mean and unit variance and such that the mgf of X1 exists in a neigh-
bourhood of zero, then for any fixed p≥ 1,

κp[Sn/
√

n] = n−
p
2 κ[Sn, . . . ,Sn] = n−

p
2 ∑

i∈[n]p
κ[Xi1 , . . . ,Xip ]
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by multilinearity of cumulants. If Xir != Xis , the corresponding summand will vanish by the
independence of Xjs. Therefore,

κp[Sn/
√

n] = n−
p
2

n

∑
j=1

κ[Xj,Xj, . . . ,Xj] = n−
p
2 +1κp[X1]

which goes to zero for p ≥ 3. As the first two cumulants are 0 and 1 respectively, we
see that the cumulants of Sn/

√
n converge to cumulants of N(0,1) and hence the moments

converge also. Thus, Sn/
√

n converges in distribution to N(0,1). !

2. Non-commutative probability spaces

We define1 three notions of non-commutative probability space, of which the first
one is sufficient for our purposes. In the next section we shall introduce the notion of
independence in such spaces.

Definition 84. A non-commutative probability space is a pair (A ,ϕ) where A is a unital
algebra over complex numbers and ϕ is a linear functional on A such that ϕ(1) = 1.

A unital algebra A is a vector space over C endowed with a multiplication operation
(a,b)→ ab which is assumed to be associative and also distributive over addition and scalar
multiplication. In addition we assume that there is a unit, denoted 1, such that a1 = a = 1a
for all a ∈ A .

Example 85. Let A be the space of all polynomials in one variable with complex coeffi-
cients. This is a unital algebra with the obvious operations. Fix a complex Borel measure
µ on R such that µ(R) = 1. Define ϕ(P) =

R
P(x)µ(dx) for any P ∈ A . Then, (A ,ϕ) is a

(commutative!) ncps. This leads us to a smaller class of ncps. If we considered polynomi-
als in three variables and µ a measure on R3, we would again get a ncps. The difference is
that in one dimension, at least if µ is compactly supported, then (A ,ϕ) has all the informa-
tion in the classical measure space (R,BR,µ).

In the example above, of particular interest are probability measures. We have as-
sumed that µ(R) = 1, but positivity is an extra condition which can be framed by saying
that ϕ(P)≥ 0 if P(x)≥ 0 for all x ∈ R. Observe that there is no clear way to introduce the
notion of positivity in a general unital algebra. This leads us to a smaller sub-class of ncps.

Definition 86. Let A be a C∗-algebra2 with a unit Let ϕ : A → C be a linear functional
such that ϕ(aa∗) ≥ 0 for all a ∈ A (we say that ϕ is a positive linear functional). Assume
also that ϕ(1) = 1. Then, we say that ϕ is a state. (A ,ϕ) is called a C∗-probability space.

Observe that ϕ is necessarily bounded. In fact, for any self-adjoint a, a−‖a‖1 and
‖a‖1−a are non-negative elements (can be written as b∗b for some b). Hence |ϕ(a)|≤‖a‖
as ϕ(1) = 1. If a is any element of the algebra, it can be written in a unique way as x + iy
where x,y are self-adjoint and hence |ϕ(a)|≤ 2.

1Much of our presentation of free probability is taken from three sources. The St. Flour lecture notes of
Voiculescu ?, various lecture notes of Roland Speicher available on his home page, and the book of Anderson
Guionnet and Zeitouni.

2By definition, this means that A has three structures. (a) That of a complex Banach space, (b) that of an
algebra and finally, (c) an involution ∗ : A → A . These operations respect each other as follows. The algebra
operations are continuous and respect the norm in the sense that ‖ab‖ ≤ ‖a‖‖b‖. The involution is idempotent
((a∗)∗ = a) and satisfies (ab)∗ = b∗a∗. In addition it is norm-preserving, and conjugate linear (and hence also
continuous). Lastly, we have the identity ‖aa∗‖ = ‖a‖2 for all a ∈ A . We say that a is Hermitian if a∗ = a and
that a is positive is a = bb∗ for some b ∈ A .
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Example 87. Let A := B(H) be the algebra of bounded linear operators on a Hilbert space
H. This is a C∗-algebra where the identity I is the unit and taking adjoints is the involution.
Let u ∈ H be a unit vector and define ϕ(T ) = 〈Tu,u〉. Then, ϕ is a linear functional and
ϕ(I) = 1. Further, ϕ(T ∗T ) = ‖Tu‖2 ≥ 0. Thus, (A ,ϕ) is a C∗-probability space. Here
multiplication is truly non-commutative.

If ψ(T ) = 〈T v,v〉 for a different unit vector v, then for 0 < s < 1, the pair (A ,sϕ +
(1− s)ψ) is also a C∗-probability space. ϕ is called a pure state while sϕ + (1− s)ψ is
called a mixed state. Any closed subalgebra of B(H) that is closed under adjoints is also a
C∗-algebra. We only consider those that contain the unit element.

Example 88. Let K be a compact metric space and let A = C(K) (continuous complex-
valued functions). The operations are obvious (involution means taking the conjugate of a
function). Let µ be any Borel probability measure on K and define ϕ( f ) =

R
K f dµ. Then

(A ,ϕ) is a C∗-probability space.

Example 89. The same applies to Cb(R) and ϕ( f ) =
R

f dµ for some Borel probability
measure µ. It is a commutative C∗-algebra. In fact this is not different from the previous
example, as Cb(R) = C(K) where K is the Stone-Cech compactification of R.

As these examples show, a C∗-probability space generalizes the idea of presenting
a probability measure on R by giving the integrals of all bounded continuous functions
which is more than giving the integral of polynomials only. However, for later purposes, it
is useful to remark that C∗-probability space is like the algebra of complex-valued random
variables, not real valued ones. A third level is to specify a probability measure µ by giving
the integrals of bounded measurable functions.

Definition 90. Let H be a Hilbert space and let A ⊆ B(H) be a W ∗-algebra3 We assume
that it contains the identity. Let u b a unit vector in H and define ϕ(T ) = 〈Tu,u〉 for T ∈ A
(a pure state). Then we say that (A ,ϕ) is a W ∗-probability space.

Example 91. (1) Let (Ω,F ,P) be a probability space and let A = L∞(P). We can
think of A as a subalgebra of B(L2(µ)) by the map M : A →B(L2(µ)) by f →M f
where M f (g) = f · g. Then we leave it as an exercise to check that A is closed
under weak operator topology.

Let 1 be the constant random variable 1. Then A is a unital algebra. Let
ϕ(X) := E[X ] = 〈MX 1,1〉 for X ∈ A . This satisfies the definition of a n.c.p.s.
Of course (A ,ϕ) is commutative and not of the main interest to us here, but this
example explains the phrase “probability space” in the n.c.p.s. In this case there
is a notion of positivity, and ϕ(X)≥ 0 for X ≥ 0.

(2) The example 87 is a W ∗-probability space too. Subalgebras of B(H) that are
closed in weak operator topology are also W ∗-probability spaces.

Example 92 (The prime example - 1). Let Mn be the space of n× n complex matrices.
This is a W ∗-algebra (it is B(H) where H = Cn). If ek is the kth standard co-ordinate
vector, then ϕk(T ) = 〈T ek,ek〉 defines a pure state on Mn. Average over k to get a new
positive linear functional t̂rn(T ) := n−1tr(T ). In other words, t̂r is the mean of the ESD of
T .

Example 93 (The prime example - 2). Let (Ω,F ,P) be a probability space and let A =
L∞(P)⊗Mn be the space of all random matrices X = (Xi, j)i, j≤n where Xi, j are bounded,

3This means that A is a C∗-subalgebra of B(H) and in addition is closed under weak operator topology.
That is, if T ∈ B(H) and Tα is a net in A such that 〈Tαu,v〉 → 〈Tu,v〉 for all u,v ∈ H, then T ∈ A .
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complex-valued random variables on Ω. Then, define ϕn(X) = E[t̂r(X)], the mean of the
expected ESD. Then (A ,ϕ) is a ncps, in fact a C∗ probability space.

Boundedness of entries is too restrictive as it does not even allow GUE matrices.
Instead, we may consider the space A of random matrices X = (Xi, j)i, j≤n where Xi, j ∈T

p<∞ Lp(Ω,F ,P). Define ϕn(X) = E[t̂r(X)] as before. This is a non-commutative proba-
bility space, although not a C∗ probability space.

3. Distribution of non-commutative random variables and Free independence

Let (A ,ϕ) be a ncps. Any element a∈A are referred to as a non-commutative random
variable and ϕ(a) as its non-commutative expectation.

Define the non-commutative moment function as mn[a1, . . . ,an] = ϕ(a1a2 . . .an). As in
the classical case, mn[·] is multilinear, but not symmetric because of non-commutativity. If
a1, . . . ,ak are ncrvs on the same ncps, then the collection of all moments {mn[ai1 , . . . ,ain ] : 1≤
i1, . . . , in ≤ k} is called the joint distribution of a1, . . . ,an. For one variable, this is just the
collection of moments ϕ(an), n≥ 1.

In classical probability, the distribution of a bounded real-valued random variable X
can be recovered from its moments E[Xn], n≥ 1. However, for a complex-valued random
variable (even if bounded), one needs joint moments of the real and imaginary parts of
X , or equivalently, that of X and X , to recover the distribution of X . This motivates the
following definition.

In a C∗ or W ∗ probability space, the joint distribution of a and a∗ is called the ∗-
distribution of a. Observe that this involves specifying ϕ(P(a,a∗)) for any non-commutative
polynomial P (with complex coefficients) in two variables. Similarly one defines the ∗-
distribution for more than one variable. As we remarked earlier, an element of a C∗-
probability space is analogous to a complex valued random variable. For a probability
measure on the complex plane, the moments , {

R
znµ(dz) : n ≥ 1} does not determine the

measure. For example, any radially symmetric µ has
R

znµ(dz) = 0 for n ≥ 1. Instead,
one should specify the joint moments of the real and imaginary parts, or equivalently,R

zmznµ(dz). Thus, the ∗-distribution is what corresponds to the distribution of a complex-
valued random variable.

In the special, but important case when a is Hermitian (to be considered analogous to
real-valued random variables), the the ∗-distribution is the same as the distribution of a.
Further, the following fact is important.

Proposition 94. If a is a self-adjoint element of a C∗-probability space, then there exists a
unique Borel probability measure µa on R such that mn(a) =

R
xnµa(dx).

Assuming the fact, by abuse of terminology we may refer to µa as the distribution of
a. Thus, for self-adjoint elements of a C∗-probability space, the distribution refers to a
p=classical probability measure on R. Observe that this does not hold for non self-adjoint
elements, or for joint distribution of several ncrvs.

PROOF OF 94. mn[a] = ϕ(an). Let P(a) = ∑n
k=0 ckak. By the positivity of ϕ, we see

that

0≤ ϕ(P(a)P(a)∗) =
n

∑
k,!=0

ckc!ϕ(ak+!)

which means that the infinite matrix
(
ϕ(ai+ j)

)
i, j≥0 is a positive definite matrix. Therefore,

there exists at least one probability measure µ with moments ϕ(an). However, by the
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boundedness of ϕ (we showed earlier that ‖ϕ‖ ≤ 2) and the properties of norm in a C∗-
algebra, we see that ϕ(an)≤ 2‖an‖ ≤ 2‖a‖n. Thus, the moments of µ satisfy

R
xnµ(dx)≤

2‖a‖n. This implies that µ must be compactly supported in [−‖a‖,‖a‖]. Since the moments
of a compactly supported measure determines the measure, we also see that µ is unique. !

Remark 95. Alternately, restrict to the example of a C∗-probability space given in 87.
Then a is a self-adjoint operator on H and by the spectral theorem, there is a spectral
measure of a at the vector u satisfying

R
xnµ(dx) = 〈anu,u〉 = ϕ(an). This is the µ we

require. Since we know that the spectral measure is supported on the spectrum, and the
spectrum is contained in B(0,‖a‖) and the spectrum of a self-adjoint element is real, it
follows that µ is supported on [−‖a‖,‖a‖].

We now illustrate with an example.

Example 96. Let H = !2(N) and e0 := (1,0,0, . . .). Let A = B(H) and ϕ(T ) = 〈T e0,e0〉.
Now let L(x0,x1, . . .) = (x1,x2, . . .) define the left-shift operator. Its adjoint is the right shift
operator L∗(x0,x1, . . .) = (0,x0,x1,x2, . . .). It is easy to see that ϕ(Ln) = ϕ(L∗n) = 1 for
n = 0 and equal to 0 for n≥ 1. Let S = L+L∗, a self-adjoint variable. Then ϕ(Sn) = 〈(L+
L∗)ne0,e0〉. It is easy to check that the latter is zero for n odd and is equal to the Catalan
number Ck = 1

k+1
(2k

k
)

for n = 2k. These are the (classical) moments of the semicircle law
supported on [−2,2]. Hence the non-commutative distribution of S is µs.c.

If we define ψ(T ) = 〈T e1,e1〉 where e1 = (0,1,0, . . .), can you find the distribution of
S in the new ncps (A ,ψ)?

Example 97. Let H = !2(Z) and let e0 be the vector e0(k) = δk,0. Then define the left
shift operator L and its adjoint L∗ (the right shift operator) in the obvious way. Again,
mn(L) = mn(L∗) = δn,0. Let S = L + L∗. Now, it is easy to check that mn(S) is

(2k
k
)

if
n = 2k and equal to zero if n is odd. These are the moments of the arcsine distribution with
density 1

π
√

4−x2
on [−2,2]. Hence S has arc-sine distribution on [−2,2].

4. Free independence and free cumulants

Independence is a central concept in probability theory. What is the analogue in the
non-commutative setting? There is more than one possible notion of independence in non-
commutative probability spaces, but there is a particular one that relates to random matrix
theory.

Definition 98. Let (A , phi) be a ncps and let Ai be a collection of unital subalgebras of
A . We say that Ai are freely independent if ϕ(a1a2 . . .an) = 0 for any n ≥ 1 and any ai ∈
Aki where k1 *= k2 *= k3 . . . *= kn (consecutive elements come from different subalgebras).
Elements b1,b2, . . . are said to be freely independent if the unital subalgebras generated by
b1, by b2 etc., are freely independent.

Example 99. So far, classical probability spaces were special cases of non-commutative
probability spaces. However, classically independent random variables are almost never
freely independent. For example, if X ,Y are random variables on (Ω,F ,P), for them to be
freely independent we must have E[XY XY ] = 0 by this happens if and only if at least one
of X and Y is degenerate at zero.

Example 100. We construct two non-trivial variables that are freely independent. Let
H = C2 with orthonormal basis e1,e2. Then for n ≥ 2 we define H⊗n as a 2n-dimensional
space whose basis elements we denote by ei1 ⊗ ei2 ⊗ . . .⊗ ein where i1, . . . , in ∈ {1,2}. Let
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H⊗0 = C with orthonormal basis e0 = 1 (thus e0 = ±1).Then set H :=
L

n≥0 H⊗n. H .
This is called the full Fock space corresponding to H and clearly {ei1 ⊗ ei2 ⊗ . . .⊗ ein : n≥
1, ik = 1,2}∪{ e0}. It is evident how to generalize this definition for any Hilbert space H,
not just C2.

Define the state ϕ(T ) = 〈T e0,e0〉 for T ∈ B(H ). This is a C∗-probability space.
We define L1,L2 ∈ B(H ) as follows. Let L1(ei1 ⊗ ei2 ⊗ . . .⊗ ein) = e1⊗ ei1 ⊗ . . .⊗ ein

and extend linearly to H . Likewise define L2 using e2. The adjoints are given by

L∗1(ei1 ⊗ ei2 ⊗ . . .⊗ ein) =

{
ei2 ⊗ . . .⊗ ein if i1 = 1.

0 otherwise

and likewise for L∗2. By the same logic as in example 97 it is easy to see that the non-
commutative distribution of T := L1 +L∗1 and S := L2 +L∗2 are both semicircle distribution
on [−2,2]. We now claim that they are freely independent. In fact the algebras A1 =
〈L1,L∗1〉 and A2 = 〈L2,L∗2〉 are freely independent.

We shall only consider the simplest non-trivial example and leave the full proof to
the reader. Since ϕ(T ) = ϕ(S) = 0, we must show that ϕ(T ST S) = 0. For this, consider
〈(L1 + L∗1)(L2 + L∗2)(L1 + L∗1)(L2 + L∗2)e0,e0〉, expand the product and observe that each
term vanishes.

I have not written the next few sections fully or properly. Please refer
to the books of Anderson, Guionnet and Zeitouni or the various lecture notes
of Roland Speicher available on his homepage. If I find time, I shall write
this stuff and post it here. For now, just a summary of what we covered
in class.

Topics covered next:

(i) Free cumulants defined through free moments by a similar formula to
the classical case, but summing only over non-crossing partitions.

(ii) Free independence is equivalent to vanishing of mixed cumulants.
(iii) Free central limit theorem - once the previous section is in place,

this follows by copying word by word the proof of classical CLT using
cumulants.

(iv) Relationship to random matrix theory - Random matrices X =(Xi, j)i, j≤n
where Xi, j are random variables on (Ω,F ,P ) can be considered also as
elements of the non-commutative probability space as described in
Example 93.

(v) The crucial connecting fact is that in many cases, large random matrices
that are independent in the classical sense, are asymptotically (as
the matrix size grows) freely independent. In particular this holds
for the following pairs of random matrices.
(a) Let D be a real diagonal whose ESD converges to a compactly supported

measure on R. Let X (i) be (scaled by 1/
√

n) independent Wigner
matrices with entries that have all moments. Then D,X (1),X (2), . . .
are freely independent.


